Pitchforks

Strategic Allocation of Policy Benefits Under Autocracy

Lorenzo Vicari (LSE)

EPSA Conference - June 26, 2025

Question And tentative framing

Do autocrats favour **loyal or opposing** communities?

- Maintain coalition → loyalists: integrity of ruling coalition by private goods distribution (Bueno de Mesquita, Smith, et al. 2003), critiqued in Clarke and Stone 2008; Gallagher and Hanson 2015;
- Prevent revolution → opponents: material benefits "buy off" problematic segments of society (Bueno de Mesquita and Smith 2010), e.g.:
 - workers (Kim and Gandhi 2010),
 - citizens threatening collective-action (Chen, Pan, and Xu 2016).

Preview

The argument: buying off opponents

- ► Case study of **development under autocracy**:
 - ▶ Battle for Wheat: flagship agricultural policy in fascist Italy.
- ▶ The policy improved wheat productivity by distributing agricultural inputs:
 - Strikes signal collective-action potential (e.g. Lorentzen 2013; Chen and Xu 2017)
 - $ightharpoonup \uparrow$ development $\Rightarrow \downarrow$ propensity to rebel.
- Hence:
 - ▶ more inputs were allocated to more threatening communities,
 - ▶ and they had better than expected policy outcomes.
- ▶ Problems:
 - ▶ Inputs are unobserved,
 - ightharpoonup agricultural characteristics influence outcomes \rightarrow decomposition based on GAEZ v3 data,
 - \triangleright strikes are not random \rightarrow IV based on anomalous rainfall.

Preview

The argument: buying off opponents

- ► Case study of **development under autocracy**:
 - ▶ Battle for Wheat: flagship agricultural policy in fascist Italy.
- ▶ The policy improved wheat productivity by distributing agricultural inputs:
 - ▶ Strikes signal collective-action potential (e.g. Lorentzen 2013; Chen and Xu 2017)
 - ▶ \uparrow development $\Rightarrow \downarrow$ propensity to rebel.
- ► Hence:
 - more inputs were allocated to more threatening communities,
 - ▶ and they had better than expected policy outcomes.
- ▶ Problems:
 - ► Inputs are unobserved,
 - ▶ agricultural characteristics influence outcomes → decomposition based on GAEZ v3 data,
 - \triangleright strikes are not random \rightarrow IV based on anomalous rainfall.

Preview

The argument: buying off opponents

- ► Case study of **development under autocracy**:
 - ▶ Battle for Wheat: flagship agricultural policy in fascist Italy.
- ▶ The policy improved wheat productivity by distributing agricultural inputs:
 - ▶ Strikes signal collective-action potential (e.g. Lorentzen 2013; Chen and Xu 2017)
 - ▶ \uparrow development $\Rightarrow \downarrow$ propensity to rebel.
- ► Hence:
 - ▶ more inputs were allocated to more threatening communities,
 - ▶ and they had better than expected policy outcomes.
- ▶ Problems:
 - ► Inputs are unobserved,
 - ▶ agricultural characteristics influence outcomes → decomposition based on GAEZ v3 data,
 - \triangleright strikes are not random \rightarrow IV based on anomalous rainfall.

History

A threat proxy: agrarian strikes of 1920

Two Red Years (1919-1920) saw massive mobilization (Di Paola 2009).

In agriculture:

- ▶ harvest-time strikes,
- ▶ land seizures (De Felice 1965),

often met with harsh repression (Bianchi 2006; Clark 1973).

History

Allocating development: The Battle for Wheat

Battle for Wheat (1925-1941):

- ▶ seed selection (Salvi, Porfiri, and Ceccarelli 2013),
- subsidies for machinery and fertilizers,
- ▶ boosted Travelling Chairs of Agriculture.

Impact on the diet is debated (Cohen 1979) but it led to wheat **productivity gains** (Carillo 2021).

no change in other crops

Data

Core municipal-level variables

Dependent variable:

▶ Wheat productivity gains: $Gain_i = \bar{y}_{1923-1928} - y_{1929}$ from the Agricultural Cadastre of 1929, digitized by Carillo 2021,

decomposed with:

► Theoretical yield improvements: FAO GAEZ v.3, shift from low to intermediate input.

Explanatory variable:

➤ Strike data: agricultural strikes in 1920 from the Ministry's 1921 Labor Bulletin,

instrumented with:

▶ Rainfall: excess rainfall in winter-spring 1919 and 1920 relative to mean from Hydrographic Bulletins (1915-79, 427 stations),

both collected by Acemoglu et al. 2022.

Data Geographic coverage

Data

Municipal-level control sets

- ► Geographic: distance from waterways and urban centres, density of railroads, historical malaria, elevation, ruggedness, municipal area;
- ► Social: literacy, workforce composition, average farm size, land GINI;
- ▶ Political: fascist organisation (branch and donors), fascist violence, new towns, PNF and PSU vote shares.

 $\begin{array}{l} Analysis \\ \text{OLS - Opposition and productivity gains} \end{array}$

Table: Strikes and Productivity Gains - OLS

'20 Agrarian Strikes	BfW						
	0.519*** (0.162)	0.408*** (0.133)	0.422*** (0.140)	0.421*** (0.140)			
Fascist vote %	$0.008 \\ (0.007)$	0.003 (0.011)	0.003 (0.011)	0.003 (0.011)			
Socialist vote %	0.363*** (0.131)	0.114 (0.113)	0.121 (0.118)	0.128 (0.119)			
Province FEs	√	√	√	✓			
Geographic		\checkmark	\checkmark	\checkmark			
Social			\checkmark	\checkmark			
Political				\checkmark			
Mean outcome	0.089	0.089	0.077	0.077			
Adjusted R ²	0.417	0.463	0.473	0.473			
F-stat	5.872	3.999	2.605	3.278			
Municipalities	4461	4460	4171	4171			

Analysis OLS - Problems

Omitted variable bias, e.g.:

- 1. agricultural features
- 2. socio-economic features

Tackled by:

- 1. decomposition: prediction based on theoretical productivity gains \rightarrow focus on socio-economic dimension,
- 2. instrumentation: strikes as caused by anomalous rain $\rightarrow LATE$ of strikes.

Analysis - Outcome variable

Theoretical gains as predictors

Theoretical gains: low \rightarrow intermediate level of input in FAO's GAEZ v.3 equation

- ► Gâin_i: geomorphological/agricultural component
- $ightharpoonup G\tilde{ain}$: unexplained component

Analysis OLS - Opposition and decomposed gains

Table: Decomposed Gains and Strikes - OLS

		Fitted			Residuals				
'20 Agrarian Strikes	0.061*** (0.022)	0.019* (0.010)	0.017* (0.009)	0.017* (0.009)	0.451*** (0.147)	0.386*** (0.132)	0.402*** (0.139)	0.400*** (0.139)	
Fascist vote %	$0.003** \\ (0.001)$	0.002** (0.001)	0.002^{***} (0.001)	0.002^{***} (0.001)	$0.006 \\ (0.008)$	$0.003 \\ (0.010)$	$0.003 \\ (0.010)$	$0.003 \\ (0.010)$	
Socialist vote %	$0.195^{***} (0.051)$	0.066** (0.028)	0.066** (0.028)	$0.061^{**} (0.028)$	$0.158 \\ (0.127)$	$0.063 \\ (0.112)$	$0.072 \\ (0.119)$	$0.084 \\ (0.119)$	
Province FEs Geographic Social Political	✓	√ ✓	√ √ √	√ √ √	✓	√ ✓	√ √ √	\ \ \	
Mean outcome Adjusted R ² F-stat Municipalities	0.069 0.633 7.707 4509	0.069 0.805 27.696 4508	0.071 0.807 20.811 4217	0.071 0.808 21.190 4217	0.038 0.385 3.629 4393	0.038 0.400 2.048 4392	0.024 0.409 1.460 4108	0.024 0.410 2.049 4108	

Analysis - Explanatory variable

Instrumentation: rainfall 1918-1920

Anomalous rainfall in 1918-1920 \rightarrow exogenous variation in strikes in 1920:

$$strikes_{i} = \alpha_{1} + \beta_{1} \mathbf{rain}_{i} + \Theta_{1} \mathbf{X}_{it} + \delta_{pt}$$
$$gain_{i} = \alpha_{2} + \beta_{2} strikes_{i} + \Theta_{2} \mathbf{X}_{it} + \delta_{pt} + \epsilon_{it}$$

Controls \mathbf{X}_{it} include:

- ▶ time-varying vote shares,
- ▶ overall rain deviation from the mean in 1918-1928.

Analysis - IV Results

Strikes lead to higher "unexplained" gains

Table: Effects of Strikes on Decomposed Policy Outcome - IV

	Actual		Fit	ted	Residuals	
'20 Agrarian Strikes	2.071** (0.975)	2.165** (1.006)	0.359 (0.271)	0.343 (0.266)	1.739* (0.981)	1.834* (1.014)
Province FE	√	√	√	√	✓	√
1918-28 Rain Variability	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1919 PSU %	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Geographic	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Social	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Political		\checkmark		\checkmark		\checkmark
Mean outcome	0.079	0.078	0.075	0.094	0.022	0.003
Cragg-Donald F	26.225	24.226	28.236	25.619	26.900	24.500
Kleibergen-Paap F	2.729	2.670	2.535	2.520	2.819	2.731
Municipalities	3810	3383	3850	3412	3751	3324

Reduced form: 25th to 75th percentile of rain deviation $\rightarrow 4/5$ SD change in Gain.

Analysis

IV - Some problems

- 1. Relevance: weak instrument
 - \rightarrow refine with original data,
- 2. Excludability:
 - Acemoglu et al. 2022 use rain in 1919 as robustness check
 - \rightarrow reciprocally controlled,
 - rain might affect yields directly
 - \rightarrow control for rain variation 1918-28,
- 3. Alternative interpretations, e.g. ↑ strikes:
 - ► ↑ labor organisation
 - ▶ ↑ bottom-up coercion of public officials

Conclusion

What this case study suggests

Empirically:

ightharpoonup exogenous variation in agrarian strikes (\sim collective-action threat) \Rightarrow higher productivity gains (\sim policy benefits)

Interpretation:

► strikes are informative of level of threat ⇒ autocrat allocates more policy benefits to more threatening communities

Thank you!

l.vicari@lse.ac.uk

IV

PRI Composition

$$PRI_{low,i} = \sum_{c} \frac{\bar{p}_{0}^{w} \hat{q}_{c,(low)}^{w}}{\sum_{j} \bar{p}_{0}^{j} \hat{q}_{c,(low)}^{j}} P(c|c \in i)$$
(1)

$$PRI_{int,i} = \sum_{c} \frac{\bar{p}_{0}^{w} \hat{q}_{c,(int)}^{w}}{\sum_{j} \bar{p}_{0}^{j} \hat{q}_{c,(low)}^{j}} P(c|c \in i)$$
(2)

$$PRI_i = PRI_{int,i} - PRI_{low,i} \tag{3}$$

i are municipalities, j crops, and c GAEZ cells, all at constant '19 prices (p).

Back

I V Crops Change

Back

Rain: Reduced Form

Table: Anomalous Rain and Productivity Gains - Reduced Form

	BfW		$B\hat{f}W$		$B ilde{f} W$	
'19-'20 Anomalous Rain	0.620 (0.378)	0.800** (0.388)	0.117 (0.072)	0.115* (0.064)	0.556 (0.394)	0.724^* (0.399)
Province FEs	√	√	√	√	√	✓
1918-28 Rain Variability	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1919 PSU %	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Geographic	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Social	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Political		\checkmark		\checkmark		\checkmark
Mean outcome	0.079	0.078	0.075	0.094	0.022	0.003
Adjusted R ²	0.471	0.474	0.813	0.812	0.409	0.413
F-stat	2.816	4.508	27.986	152.818	1.614	4.557
Municipalities	3810	3383	3850	3412	3751	3324